• All Products

      • Charge Air Coolers
        • Charge Air Coolers

          Used to cool the hot, compressed air from the turbo before it reaches the engine, the intercoolers improve engine efficiency and reduce emissions for marine and land-based stationary engines.

      • Exhaust Gas Heat Exchangers
        • Exhaust Gas Heat Exchangers

          Exhaust gas heat exchangers are designed to recover waste heat energy from the exhaust stream of reciprocating engine powered generating sets.

      • Fuel Coolers
        • Fuel Coolers

          Bowman 'copper free' fuel coolers are compact, highly efficient heat exchangers suitable for fuel conditioning rigs in the automotive testing industry.

      • Header Tank Heat Exchangers
        • Header Tank Heat Exchangers

          Engine coolant header tank heat exchangers for marine propulsion, gensets or stationary land-based engines.

      • Hot Tub Heat Exchangers
        • Hot Tub Heat Exchangers

          Bowman EC 80-5113-1T heat exchangers provide a new solution for heating spas and hot tubs in just a fraction of the time taken by traditional electric heaters.

      • Hydraulic Oil Coolers
        • Hydraulic Oil Coolers

          Highly efficient heat transfer solutions for cooling marine, land-based and underground hydraulic systems.

      • Inline Plate Type Heat Exchangers
        • Inline Plate Type Heat Exchangers

          Bowman inline plate heat exchangers are a compact, economical solution for high efficiency heat transfer.

      • Marine Engine Coolers
        • Marine Engine Coolers

          Bespoke cooling solutions for a range of popular marine engines from major OEMs, including coolant heat exchangers, charge air coolers, plus combined heat exchangers and exhaust manifolds, suitable for cooling marine engines up to 1 MW.

      • Marine Transmission Oil Coolers
        • Marine Transmission Oil Coolers

          Bowman has a range of highly efficient oil coolers designed for marine and industrial engines and transmissions.

      • Electric and Hybrid Coolers
        • Electric and Hybrid Coolers

          Efficient heat exchangers for cooling electric marine motors, hydrogen fuel cells, battery packs, chargers, AC-DC converters, DC-DC converters, inverters and associated equipment for electric and hybrid marine propulsion and charging systems.

      • Shell and Tube Heat Exchangers
        • Shell and Tube Heat Exchangers

          Highly efficient heat transfer solutions for cooling a variety of applications where air and fluids need to be cooled by fluids.

      • Stainless Steel Heat Exchangers
        • Stainless Steel Heat Exchangers

          Many applications require stainless steel shell and tube heat exchangers and Bowman provide a standard range of units that are suitable for cooling or heating a variety of fluids.

      • Swimming Pool Heat Exchangers
        • Swimming Pool Heat Exchangers

          Bowman swimming pool heat exchangers are renowned for reliability and efficiency. Whether heating your pool with a traditional boiler or a renewable energy source, Bowman is the obvious choice.

    • All Applications

      • Automotive Testing
        • Automotive Testing

          Premium quality heat exchangers and oil coolers for precise temperature control of engines under test cell development conditions.

      • CHP / Co-Generation
        • CHP / Co-Generation

          Recovering waste heat energy from engine powered generating sets for biogas, diesel and natural gas applications up to 1 MW.

      • Engine Cooling Solutions
        • Engine Cooling Solutions

          Efficient cooling for stationary / land-based engines where air cooling is either unavailable or inappropriate.

      • Electric & Hybrid Marine
        • Electric & Hybrid Marine

          The reliable solution for cooling Electric & Hybrid Marine Propulsion Systems.

      • Industrial Hydraulics
        • Industrial Hydraulics

          A comprehensive oil cooling solution for industrial hydraulic control systems, plus high temperature and mining applications.

      • Marine Hydraulics
        • Marine Hydraulics

          A complete solution for cooling complex on-board hydraulic equipment, including thruster and stabiliser systems.

      • Marine Propulsion
        • Marine Propulsion

          The complete cooling solution for marine engine propulsion, including the latest electric and hybrid systems.

      • Hot Tubs / Spas
        • Hot Tubs / Spas

          An energy efficient solution for heating hot tubs and swim spas faster, significantly reducing heat-up time for guest change-over periods.

      • Swimming Pool
        • Swimming Pool

          Quality heat exchangers for efficient swimming pool heating, using boiler or renewable energy heat sources.

  • Distributors
  • News
  • Knowledge Centre
  • Downloads
  • About Us
  • Contact Us

Hot Tub Heat Exchangers

Bowman EC 80-5113-1T heat exchangers provide a new solution for heating spas and hot tubs in just a fraction of the time taken by traditional electric heaters.

Hot Tub Heat Exchangers

Bowman EC 80-5113-1T heat exchangers provide a new solution for heating spas and hot tubs in just a fraction of the time taken by traditional electric heaters.
Bowman EC 80-5113-1T heat exchangers provide a new solution for heating spas and hot tubs in just a fraction of the time taken by traditional electric heaters. Designed for use with an external boiler heat source, they can heat hot tubs in around 1 hour, using pre-heated water, or just 3-4 hours using ambient temperature water. And with the cost of electricity being much higher than gas or biomass, energy costs are substantially reduced too!

Product Benefits

Faster heat-up

Can heat hot tubs in around 1 hour

Cost saving

Reduces energy costs significantly

Premium quality

Titanium tube core for long life

Compact design

Fits directly into spa pipework

Heat sources

Can be used with gas, LPG and biomass boilers

Bowman EC 80-5113-1T heat exchangers provide a new solution for heating spas and hot tubs in just a fraction of the time taken by traditional electric heaters. Designed for use with an external boiler heat source, they can heat hot tubs in around 1 hour, using pre-heated water, or just 3-4 hours using ambient temperature water. And with the cost of electricity being much higher than gas or biomass, energy costs are substantially reduced too!

Features

Faster Heat-Up

Faster Heat-Up

Even using pre-heated 25 °C water, it can still take more than 6 hours to achieve full temperature with an electric heater. A Bowman heat exchanger plus an external heat source, can reduce this to around 1 hour.

Energy Saving

Energy Saving

Electric heating is expensive and often double the price of gas or biomass heating. Switching to a Bowman heat exchanger with external boiler could slash heating costs dramatically.

Compact Design

Compact Design

Though compact in size, it’s big on performance, capable of increasing the pool water by 10 °C to 12 °C per hour and is easily installed into the existing spa water circuit.

Shell and Tube Design

Shell and Tube Design

Hot water from the external boiler enters the heat exchanger and circulates inside the outer ‘shell’ of the unit and over the tube core, whilst spa water travels through the tubes collecting heat on the way.

Titanium Tube Core

Titanium Tube Core

The tube core is manufactured from titanium, one of the most durable materials available and perfect for spas and hot tubs. All titanium materials in contact with pool water come with a 10-year guarantee.

External Heat Source

External Heat Source

Bowman EC80 heat exchangers can be used with virtually any types of external heat source, including gas, biomass, LPG boilers, ground and air source heat pumps, plus the latest hybrid systems.

Specification

Spa Heat Exchangers – Typical Performance and Dimensions

The table below enables the selection of the most appropriate heat exchanger for your swimming pool or spa. The information shows the amount of heat that can be transferred from conventional and condensing boilers, together with the basic dimensions of each unit.  Additional heat exchangers are available but the two options shown are suitable for all hot tubs and swim spas. For further information please download the product brochure, contact us or your nearest stockist.

The image above is representative of spa heat exchangers for boilers rated from 12 – 50 kW.

Note – Ratings and weight are specifically relevant to the titanium versions of each heat exchanger. Download the brochure for more detailed information. The heat-up times are estimated and based upon heating from ambient water temperature (quicker heat-up times can be achieved with pre-heated water).

Part NumberSpa Size (m³)Heat-Up Time (hours)Max Pool Flow (l/min)Heat Transfer at 82°C (kW) Heat Transfer at 60°C (kW) Dim. A (mm)Dim. B (mm)Dim. C (mm)Weight (kg)
5113-1T33200251637060863.0
5113-2T1052005030456140864.0
View Table
Part Number:
5113-1T
Spa Size (m³)
3
Heat-Up Time (hours)
3
Max Pool Flow (l/min)
200
Heat Transfer at 82°C (kW)
25
Heat Transfer at 60°C (kW)
16
Dim. A (mm)
370
Dim. B (mm)
60
Dim. C (mm)
86
Weight (kg)
3.0
Part Number:
5113-2T
Spa Size (m³)
10
Heat-Up Time (hours)
5
Max Pool Flow (l/min)
200
Heat Transfer at 82°C (kW)
50
Heat Transfer at 60°C (kW)
30
Dim. A (mm)
456
Dim. B (mm)
140
Dim. C (mm)
86
Weight (kg)
4.0

*Heat-up times are based on the volume of water being heated from 15 °C – 39 °C with boiler water at 82 °C. Times may vary depending on ambient temperature and insulation of the spa during heating.

Swimming Pool Boiler Range – Typical Performance and Dimensions

The table below enables the selection of the most appropriate heat exchanger for your swimming pool or spa. The information shows the amount of heat that can be transferred from either boiler or renewable energy sources, together with the basic dimensions of each unit.  Typical pool sizes are also shown as a guide. For further information please download the product brochure, contact us or your nearest stockist.

The image above is representative of swimming pool heat exchangers for boilers rated from 12 – 100 kW.

Note – Ratings and weight are specifically relevant to the titanium versions of each heat exchanger. Download the brochure for more detailed information.

The image above is representative of swimming pool heat exchangers for boilers rated from 100 – 300 kW.

Note – Ratings and weight are specifically relevant to the titanium versions of each heat exchanger. Download the brochure for more detailed information.

The image above is representative of swimming pool heat exchangers for boilers rated from 170 – 1055 kW.

Note – Ratings and weight are specifically relevant to the titanium versions of each heat exchanger. Download the brochure for more detailed information.

Swimming Pool Boiler Range – Typical Performance and Dimensions

The images above are of swimming pool heat exchangers for renewable energy sources. The top image is representative of the 5113-3, 5113-5 and 5114-5 heat exchangers and the second image shows the 5115-5 unit.

Note – Weight provided are for the titanium versions.

More detailed product information can be found on all of the heat exchangers in the range by clicking the link for the specific product or downloading the product data sheets below.

Metric Connections – European Specification 

For spas, hot tubs and small private pools

For mid sized private and commercial pools

For large commercial and public pools

For more information on JK190-5118-3 and PK190-5119-3 please contact Bowman.

For transferring heat from solar panels and heat pumps

Imperial Connections – North America

For spas, hot tubs and small private pools

For mid sized private and commercial pools

For large commercial and public pools

For more information on JK190-5110-3 and PK190-5111-3 please contact Bowman.

For transferring heat from solar panels and heat pumps

Downloads

No download content found.

Swimming Pool Heat Exchangers

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

Download

Save energy & heat hot tubs faster!

Learn how the EC80 can help you heat your hot tub quickly and efficiently.

Download

Energy efficient hot tub heating for luxury golf resort

Download our hot tub case study here.

Download
  • Swimming Pool Heat Exchangers

    Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

  • Swimming Pool Heat Exchangers

    Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

  • Swimming Pool Heat Exchangers

    Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

  • Swimming Pool Heat Exchangers

    Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

Installation Manual for Swimming Pool Heat Exchangers

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

5113 Product Profile

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

5113 Product Profile

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

5113 Product Profile

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

5113 Product Profile

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

Installation Manual for Swimming Pool Heat Exchangers

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

5113 Product Profile

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

5113 Product Profile

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

5113 Product Profile

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

5113 Product Profile

Technical sales brochure includes product information, ratings charts, drawings and dimensions for the standard product range.

FAQs

FAQs

Most hot tubs are supplied with an integral electric water heater, which are usually around 3 kW output, depending on the capacity of the hot tub. This type of heater will usually increase the water temperature by around 1 – 2 °C per hour, so it can take up to 24 hours to heat a tub using ambient temperature water.

To overcome this problem, some users fill their tub with pre-heated (25 °C) water from an adjacent boiler, but given that hot tubs usually operate at around 38-40 °C, it can still take a further 6 to 10 hours to achieve full temperature, depending on the performance of the electric heater.

This long heat up time has created a high level of dissatisfaction for many owners, who want their hot tubs to be available for use much faster than the standard heating system allows.

Consequently, many hot tub users, especially those in the commercial sector, are switching to a new type of heating system, using an external boiler, linked to a Bowman heat exchanger. The benefits include significantly reduced heat up times – typically 3 – 4 hours using ambient temperature water, or 1 hour using pre-heated water), plus significantly reduced energy costs compared to electric heating.

More information on heating hot tubs with Bowman heat exchangers.

Selecting the correct heat exchanger is very important to ensure the pool heats up quickly to desired temperature. The main issues to consider when sizing a swimming pool heat exchanger are;

  1. Pool size – what is the water capacity? Heat exchangers are sized according to capacity, so a unit designed to heat a 80 m³ (18,000 gal) pool would be no use, if you have an 180 m³ (39,500 gal) pool.
  2. How is it heated? Usually, the choice is either a boiler or renewable energy. If it’s renewable energy, select a heat exchanger specially designed for the lower temperature water provided by solar panels or heat pumps, as these units need less energy to heat the pool to the required temperature.
  3. Boiler water temperature – however, most pools will be heated by boilers, so what is the temperature of the boiler water? Usually, it’s between 80 °C and 85 °C – the ideal temperature for pool heating. Some boilers are lower – around 60 °C. So, using 82 °C water, a heat exchanger providing 110 kW should heat your 180 m³ pool efficiently. But if the boiler water temperature is only 60 °C, the heat available to transfer drops to around 60 kW – a reduction of over 40%, so a larger heat exchanger would be required for the pool to achieve full temperature.
  4. What are the water flow rates? Flow rates are vital for the heat exchanger to transfer thermal energy to the pool. If the hot water flow rate is too low, the available energy will not be passed through the heat exchanger. However, the flow rate of the pool water is equally important. People often think it is important to generate a large temperature differential between the pool water entering and leaving the heat exchanger. They are happy, if the pipework connected to the outlet of the heat exchanger is noticeably warmer than it is at the inlet. In reality, this actually reduces the efficiency of the heat transfer process! This is because the pool water flow is too low – the water remains in the heat exchanger for too long, so a much smaller volume of water is being heated to a slightly higher temperature. However, with higher flow rates, the time taken to turn over the pool water will reduce and even a small increase in the temperature of the pool water through the heat exchanger (1.5 °C for example) will have a greater effect on the heating efficiency of the pool.

More information about heat exchanger selection, read the article ‘Why doesn’t my pool heat up faster?’

Selecting the correct heat exchanger is very important to ensure the pool heats up quickly to desired temperature. The main issues to consider when sizing a swimming pool heat exchanger are;

  1. Pool size – what is the water capacity? Heat exchangers are sized according to capacity, so a unit designed to heat a 80 m³ (18,000 gal) pool would be no use, if you have an 180 m³ (39,500 gal) pool.
  2. How is it heated? Usually, the choice is either a boiler or renewable energy. If it’s renewable energy, select a heat exchanger specially designed for the lower temperature water provided by solar panels or heat pumps, as these units need less energy to heat the pool to the required temperature.
  3. Boiler water temperature – however, most pools will be heated by boilers, so what is the temperature of the boiler water? Usually, it’s between 80 °C and 85 °C – the ideal temperature for pool heating. Some boilers are lower – around 60 °C. So, using 82 °C water, a heat exchanger providing 110 kW should heat your 180 m³ pool efficiently. But if the boiler water temperature is only 60 °C, the heat available to transfer drops to around 60 kW – a reduction of over 40%, so a larger heat exchanger would be required for the pool to achieve full temperature.
  4. What are the water flow rates? Flow rates are vital for the heat exchanger to transfer thermal energy to the pool. If the hot water flow rate is too low, the available energy will not be passed through the heat exchanger. However, the flow rate of the pool water is equally important. People often think it is important to generate a large temperature differential between the pool water entering and leaving the heat exchanger. They are happy, if the pipework connected to the outlet of the heat exchanger is noticeably warmer than it is at the inlet. In reality, this actually reduces the efficiency of the heat transfer process! This is because the pool water flow is too low – the water remains in the heat exchanger for too long, so a much smaller volume of water is being heated to a slightly higher temperature. However, with higher flow rates, the time taken to turn over the pool water will reduce and even a small increase in the temperature of the pool water through the heat exchanger (1.5 °C for example) will have a greater effect on the heating efficiency of the pool.

More information about heat exchanger selection, read the article ‘Why doesn’t my pool heat up faster?’

Selecting the correct heat exchanger is very important to ensure the pool heats up quickly to desired temperature. The main issues to consider when sizing a swimming pool heat exchanger are;

  1. Pool size – what is the water capacity? Heat exchangers are sized according to capacity, so a unit designed to heat a 80 m³ (18,000 gal) pool would be no use, if you have an 180 m³ (39,500 gal) pool.
  2. How is it heated? Usually, the choice is either a boiler or renewable energy. If it’s renewable energy, select a heat exchanger specially designed for the lower temperature water provided by solar panels or heat pumps, as these units need less energy to heat the pool to the required temperature.
  3. Boiler water temperature – however, most pools will be heated by boilers, so what is the temperature of the boiler water? Usually, it’s between 80 °C and 85 °C – the ideal temperature for pool heating. Some boilers are lower – around 60 °C. So, using 82 °C water, a heat exchanger providing 110 kW should heat your 180 m³ pool efficiently. But if the boiler water temperature is only 60 °C, the heat available to transfer drops to around 60 kW – a reduction of over 40%, so a larger heat exchanger would be required for the pool to achieve full temperature.
  4. What are the water flow rates? Flow rates are vital for the heat exchanger to transfer thermal energy to the pool. If the hot water flow rate is too low, the available energy will not be passed through the heat exchanger. However, the flow rate of the pool water is equally important. People often think it is important to generate a large temperature differential between the pool water entering and leaving the heat exchanger. They are happy, if the pipework connected to the outlet of the heat exchanger is noticeably warmer than it is at the inlet. In reality, this actually reduces the efficiency of the heat transfer process! This is because the pool water flow is too low – the water remains in the heat exchanger for too long, so a much smaller volume of water is being heated to a slightly higher temperature. However, with higher flow rates, the time taken to turn over the pool water will reduce and even a small increase in the temperature of the pool water through the heat exchanger (1.5 °C for example) will have a greater effect on the heating efficiency of the pool.

More information about heat exchanger selection, read the article ‘Why doesn’t my pool heat up faster?’

EJ Bowman Newsroom

Get in Touch

If you have a specific enquiry or would like to talk to one of our technical sales engineers, you can contact us by phone or email, using the contact details below. For more general enquiries, simply fill in and return the contact form for a fast response.

 

Tel: +44 (0)121 359 5401
E-mail: [email protected]

Local Distributors

A network of authorised, international Bowman distributors, who hold product stocks and provide local service, is also available.

This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.